深圳市人工智能与机器人研究院(深圳市人工智能与机器人研究院HR)

人工智能 184
今天给各位分享深圳市人工智能与机器人研究院的知识,其中也会对深圳市人工智能与机器人研究院HR进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、不要引用「没有免费的午餐定理」了

今天给各位分享深圳市人工智能与机器人研究院的知识,其中也会对深圳市人工智能与机器人研究院HR进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

不要引用「没有免费的午餐定理」了

不要只顾引用不看原文。

AI 科技 评论按: 「没有免费的午餐定理」一度是机器学习界最常被谈起的定理之一(真正长期被谈起的自然是「更多的数据等于更好的表现」)。不过机器学习科学家 Andreas Mueller 最近撰文表示大家都引用错定理了,其实事情比这更复杂,也有更深远的启示。

Andreas Mueller 是哥伦比亚大学数据科学研究院的助理研究科学家,也是《Introduction to machine learning with Python》一书的作者;他还是 scikit-learn 机器学习库的核心开发者之一。

AI 科技 评论把他的这篇博客全文编译如下。

首先一句话概括我这篇文章要说什么:大家以后尽量不要再引用 Wolpert 的「没有免费的午餐定理」了。如果你已经在哪里引用过,那你很有可能用它支持了错误的结论。他的句话实际上想表达的是「你不可能在没有假设的情况下从数据中学习」。

提出「没有免费的午餐定理」这个概念的,实际上是 David H. Wolpert 的《The Lack of A Priori Distinctions Between Learning Algorithms》(https:// www .mitpressjournals.org/doi/abs/10.1162/neco.1996.8.7. 134 1)这篇论文。机器学习领域里有不少论文,它们经常被引用,但是没什么人认真读过论文内容;这篇论文就是其中之一。大多数机器学习领域内的人提起这篇论文的时候都是想要说明「某个模型不可能在每个方面都是最好的」,或者「某个模型不会在每个方面都比另一个模型强」。但实际上这并不是 Wolpert 的这篇论文、这个定理真正想要表达的内容,所以大家未来不应该这样引用这个定理,我会在下文里仔细说明这件事;以及,即便单独考虑大众想要说明的「某个模型不可能在每个方面都是最好的」,其实这个结论也是有问题的。

《Understanding Machine Learning》里提出的那个定理和 Wolpert 的很不一样,我的理解是, Shalev-Shwarz 和 Ben-David 两人提出这个定理就是为了给「没有免费的午餐」提出与 Wolpert 不同的、新的诠释,而其实他们的定理内容是「某个模型不可能在每个方面都是最好的」,不过他们的表达方式非常具体。某种程度上说,他们描述这个定理的方式要比我们从现在的字面上所能感受到的要清晰明确得多。但我不太赞同他们用一个已有的名字来命名这个定理的做法。

Wolpert 最早的那篇论文的主要内容可以总结为「在这个定理的假设之下,任何两个预测函数的泛化能力都是相同的」。这里有两个关键部分:假设和结论。

只看结论「任何两个预测函数的泛化能力都是相同的」的话,经常会有人理解为类似「梯度提升不会总是最好的」这样。但实际上它想说的是「梯度提升几乎每次都能找到出现频率最高的类」或者「神经网络几乎每次都能预测到出现频率最低的类」。显然这和我们的机器学习实践经验是冲突的。但根据这个定理的说法,在泛化性质方面它就和你能找到的最好的模型一样。所以这是怎么回事?

理解这个定理的关键是理解定理中的假设。这个定理中的假设并不是机器学习研究中常用的那个「数据来自某个给定分布中的独立同分布」假设,恰恰相反,Wolpert 假设数据是一个有限集,而且训练和测试是独立的、各自对应不同分布的数据。这个假设并非没有合理之处,在实际中我们的数据总是有限的,而且我们希望看看模型在此前从未见过的新数据上表现如何。这样的假设让 Wolpert 能够考虑到所有可能的数据集的情况。那么,这个定理就是阐述在这个假设下、在所有可能的数据集上对比两个算法的表现。

虽然这个假设对于机器学习研究来说有一些合理之处,但其实问题也不小:

说成这样以后,我们就能看出来这些假设对于任何预测建模都算不上有利。

那么现在我们可以尝试总结一下,或者重新表述一下 Wolpert 的「没有免费的午餐定理」到底想要说什么。单独看结论得到的「每个模型在预测成员较少的那个分类时都有同样的表现」可以理解为说「学习是不可能的」。再组合上我们对于他的假设的理解的话,就成了「如果训练数据集和测试数据集没有什么关系,而且特征和标签之间也没有什么关系,那么学习就是不可能的」。这听起来简直自然而然,不过也就和平时大家谈论的「没有免费的午餐定理」的内容大相径庭。

也有一种对这个定理的解读是「为了让学习变得可能,你需要做出一些假设」。只不过,在这篇论文里 Wolpert 做出的假设恰恰是「训练数据集和测试数据集没有什么关系,而且特征和标签之间也没有什么关系」,这样一来学习反而变得不可能了。所以,如果你想要说明的观点是「学习需要假设」的话,那你就不应该引用这一篇论文。

在我看来,这篇论文最大的意义是挑战了独立同分布假设。Wolpert 用很好的理由说明了为什么他认为这个假设不怎么妥当,以及为什么机器学习理论需要 探索 其它的理论框架。尤其是,如果数据集容量是有限的,他就提出了一个确实值得考虑的情况。在这种情况下,独立同分布假设会允许一个点同时出现在训练集和测试集中,显然这也就没办法讨论泛化性了。那么 Wolpert 提出训练集和测试集没有什么联系,也就是合理的。

不过,他提出训练集和测试集(以及标签)是相互完全独立的,这事还是有点奇怪的。我不确定他是否真的认为这是一个好的思考机器学习问题的框架。我猜测他提出这个的动机是希望整个领域重新考虑独立同分布假设是否合理,并且尝试寻找能够更好地反映机器学习实践的假设。如今许多年后回头来看,我觉得很可惜,没有更多的研究者沿着他的思路做更多的讨论,而且他提出的定理也显然被大批机器学习实践者误读了。

在文章开头我提到过还有另一个「没有免费的午餐定理」。和 Wolpert 非常不同的是,它评价模型的时候使用了独立同分布假设;在其它方面则有相似之处,在没有其它额外假设的前提下,如果你只能看到一部分数据,那么其余的数据的标签仍然是具有任意的可能的。所以,具体地来说,这个由 Shalev-Shwarz 和 Ben-David 提出的「没有免费的午餐定理」的内容是,「对于任意一个指定的预测算法,都会有它表现很糟糕的数据集,也就是说在这个数据集上别的学习者会有更好的表现」。不过这没法阻挡有人提出「算法 A 永远都比算法 B」好之类的说法,因为真正表现更好的那个算法是无法实现的(它应当是那个无需查看数据就总能生成完全正确答案的算法)。在这个思考框架里可以很轻松地证明,在一个不平衡的数据集中,预测出现频率较高的类比预测频率较低的类要更容易;而这个结论是无法在 Wolpert 的框架中得到的。

我觉得,不论你想要说明的结论是什么,几乎都不会需要引用 Wolpert 的论文。如果你想说明的是「有适当的假设就可以进行学习」,那你大概可以引用 Shalev-Shwarz 和 Ben-David 的那一整章的内容,我也不确定有没有更正式的方法来引用。如果你非常想的话,你也可以引用 Wolpert,但我觉得这带来的困惑要比帮助多多了。而如果你想说的是「对于有限数据来说,独立同分布的假设也太奇怪了」,那你就一定要引用 Wolpert!

最后,如果你想要说的是「梯度提升不可能永远比神经网络强,因为有没有免费的午餐定理」,那在我看来你搞错了,没有任何证据可以支持这样的陈述。我其实也不觉得在常用的机器学习算法之间有任何的「总是更好」或者「总是更糟糕」的优劣关系,但我同时也没听说过有任何的机器学习理论能禁止这样的事情发生(只要是在「学习是可行的」框架下讨论)。

如果你对机器学习理论感兴趣,Shalev-Shwarz 和 Ben-David 的那本书其实很棒。除此之外我还很喜欢 Mehryar Mohri, Afshin Rostamizadeh 和 Ameet Talwalkar 合著的《Foundations of Machine Learning》()。我自己并不是一个做理论研究的人,但我觉得有一些理论基础能在思考算法的时候有一些好的思想框架。你想读一读 Wolpert 的那篇论文也不错,虽然我觉得你的最大收获会是了解他为什么不喜欢独立同分布假设,实际上论文中更多地是对机器学习理论的哲学的思考,而不是一般的机器学习理论讨论。

via .com /2019/07/dont-cite-no-free-lunch-theorem.html

2019 全球人工智能与机器人峰会

2019 年 7 月 12 日至 14 日 ,由中国计算机学会(CCF)主办、雷锋网和香港中文大学(深圳)联合承办,深圳市人工智能与机器人研究院协办的 2019 全球人工智能与机器人峰会 (简称 CCF-GAIR 2019) 将于深圳正式启幕。

届时,诺贝尔奖得主JamesJ. Heckman、中外院士、世界顶会主席、知名Fellow,多位重磅嘉宾将亲自坐阵 ,一起探讨人工智能和机器人领域学、产、投等复杂的生存态势。

人工智能与机器人研究是核心吗?

计算机视觉、机器学习、自然语言处理、机器人和语音识别是人工智能的五大核心技术,它们均会成为独立的子产业。

计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列,来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理,分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

计算机视觉有着广泛的应用,其中包括:医疗成像分析被用来提高疾病预测、诊断和治疗;人脸识别被Facebook用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。

机器视觉作为相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题而非研究层面的课题。因为应用范围的持续扩大,某些计算机视觉领域的初创公司自2011年起已经吸引了数亿美元的风投资本。

机器学习

机器学习指的是计算机系统无须遵照显式的程序指令,而只依靠数据来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越准确。

机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管理、石油和天然气勘探,以及公共卫生等。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型来提高其识别对象的能力。

现如今,机器学习已经成为认知技术中最炙手可热的研究领域之一,在2011~2014年这段时间内就已吸引了近10亿美元的风险投资。谷歌也在2014年斥资4亿美元收购Deepmind这家研究机器学习技术的公司。

资4亿美元收购Deepmind这家研究机器学习技术的公司。

自然语言处理

自然语言处理是指计算机拥有的人类般的文本处理的能力。比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本。例如,自动识别一份文档中所有被提及的人与地点;识别文档的核心议题;在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅针对简单的文本匹配与模式就能进行操作。

自然语言处理像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合。建立语言模型来预测语言表达的概率分布,举例来说,就是某一串给定字符或单词表达某一特定语义的最大可能性。选定的特征可以和文中的某些元素结合来识别一段文字,通过识别这些元素可以把某类文字同其他文字区别开来,比如垃圾邮件同正常邮件。以机器学习为驱动的分类方法将成为筛选的标准,用来决定一封邮件是否属于垃圾邮件。

因为语境对于理解“timeflies”(时光飞逝)和“fruitflies”(果蝇)的区别是如此重要,所以自然语言处理技术的实际应用领域相对较窄,这些领域包括分析顾客对某项特定产品和服务的反馈,自动发现民事诉讼或政府调查中的某些含义,自动书写诸如企业营收和体育运动的公式化范文,等等。

机器人

将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、制动器以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如,无人机、可以在车间为人类分担工作的“cobots”等。

语音识别

语音识别主要是关注自动且准确地转录人类的语音技术。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪声、区分同音异形/异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些与自然语言处理系统相同的技术,再辅以其他技术,比如描述声音和其出现在特定序列与语言中概率的声学模型等。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。比如Domino抯Pizza,最近推出了一个允许用户通过语音下单的移动APP。

上述5项技术的产业化,是人工智能产业化的要素。人工智能将是一个万亿级的市场,甚至是10万亿级的市场,将会为我们带来一些全新且容量巨大的子产业,比如机器人、智能传感器、可穿戴设备等,其中最令人期待的是机器人子产业。

机器人应用的分法有很多种,从应用层面可以粗略地分为以下几个类别。第一个类别是工业级机器人,像富士康这种公司已经运用得很好了,因为劳工成本越来越高,用工风险越来越高,而机器人则可以解决这些问题。第二个类别是监护级机器人,它可以在家里和医院里作为病人、老人或孩子的护理,帮助他们做一定复杂程度的事情。中国对监护级机器人需求其实更迫切一些,因为中国人口红利在下降,同时老龄化又不断地上升,这两个矛盾,机器人都可以帮助解决。因此,这个领域的需求在民用市场占比很大。第三个类别就是探险级机器人,用来采矿或者探险等,大大避免了人所要经历的危险。此外还有用来打仗的军事机器人等。

网络媒体Business Insider预测,机器人将在许多岗位上取替人类:电话营销员、校对员、手工裁缝师、数学家、保险核保人、钟表修理师、货运代理商、报税员、图像处理人员、银行开户员、图书馆员、打字员等。因为它们的价格竞争力惊人。麦肯锡全球研究院的研究表明,当中国制造业工资每年增长10%~20%时,全球机器人的价格每年下调10%,一台最便宜的低阶机器人只需花费美国人年平均工资的一半。国际研究机构顾能预测:2020年机器人将导致全球新一波失业潮。

同时,人工智能技术的发展还将让许多旧产业获得改头换面式的新生,其中最典型的是汽车产业。汽车产业已存在上百年了,其间的变革也是非常大的,但驾驶汽车的始终是人,可最近几年,随着谷歌等公司的大力投入,机器或者说某种自动化的系统已经有望取代人来驾驶汽车,从而形成一个市场容量巨大的新产业,即无人驾驶汽车产业。这个产业的规模也将是万亿级甚至是10万亿级的。而且,这个产业还将与新能源产业叠加、融合在一起,形成“车联网+能联网+互联网+电动汽车”的复合产业——未来,我们会把插电式汽车和氢燃料汽车作为发电厂使用,从而使新能源汽车成为电网的一部分,成为新能源的供给者,与现在一些装有太阳能发电系统的房屋是太阳能的供给者一样。

毫无疑问,与互联网一样,智能技术会向几乎所有旧产业渗透。华泰证券在一份人工智能产业的研究报告中提及了九大行业:生活服务O2O、医疗、零售业、金融业、数字营销业、农业、工业、商业和在线教育。实际上,将获得新生的旧产业还有许多,如军事、传媒、家居、医疗健康业、生命科学、能源、公共部门……甚至包括受VR/AR(虚拟现实与增强现实)技术发展影响而产生的虚拟产业。(内容来自机器人家)

望采纳,谢谢

空间机器人待遇怎样

空间机器人联合实验室-博士后

杭州-余杭区经验不限博士

30-35k

冷女士 一周前在线 已认证

HRBP · 之江实验室

职位介绍

【 空间机器人联合实验室基本情况介绍】

空间智能机器人联合实验室(以下简称“联合实验室”)是之江实验室与中国航天科技集团有限公司第五研究院第五〇二研究所(以下简称“五〇二所”)合作共建的实验室,依托之江实验室智能机器人研究中心与五〇二所空间智能控制技术重点实验室进行建设。

面向空间智能机器人的国家战略发展需求,研究团队围绕智能感知与场景理解、自主决策与规划控制、机器人学习训练等多个方向的关键科学问题展开基础理论研究工作,并围绕国家建设航天强国的战略发展目标,研究空间智能机器人应用的关键技术,建立空间智能机器人应用示范。

【研究方向】

1.智能感知与场景理解。针对地外非结构化环境下无人系统的智能感知,开展多传感器信息融合、目标分类、检测和精准分割、动态视频分析、趋势预测、高效感知等相关研究。

2.自主决策、规划与控制。针对地外无人系统的精准操控,开展柔顺抓捕决策与规划、空间攻防博弈、集群冲突消解、多体协同决策与规划、群智涌现等相关研究。

3.机器人学习训练。针对无人系统的自主学习,开展交互迭代式学习训练、未知交互控制、示教加速学习、专用体系架构、高效学习和可持续学习等相关研究。

【应聘条件】

具有计算机、光电、控制、机械电子等相关专业博士学位,年龄在35周岁以下。

近五年内研究方向为多传感融合、机器学习、机器人控制、物理孪生虚拟仿真环境建模等,并在相关重要学术刊物或会议上发表过论文,具有扎实的理论基础和较强的外语水平。

【招收人数】

1.感知融合方向:1人

2.导航规划方向:1人

3.控制抓取方向:1人

4.场景理解方向:1人

【申请流程】

1.完成线上岗位申请并提交,提交材料必需包括:简历、博士论文摘要、学术代表作、专家推荐信。

2.初审合格者进入博士后招收流程。

3.确定人选后,签署招收协议。

4.办理进站手续并报到。

【薪资待遇】

1.提供年薪税前40万元(含省、市、区人才补助);

2.提供科研启动经费10万元,可申请或参与其他项目获得更多经费;

3.对获得中国博士后科学基金资助、浙江省博士后科研项目择优资助的博士后研究人员给予1:1科研经费配套;

4.入选博士后创新人才支持计划、博士后国际交流计划引进项目的博士后研究人员,相关待遇可叠加;

5.按国家有关规定缴纳五险一金;

6.免租金提供精装修博士后公寓;

7.期满考核优秀者可视情况作为实验室高级研究专家录用;

8.鼓励博士后到国内外一流高校、研究机构访学交流,并提供一定的保障。

职位福利

年终奖金五险一金住房补贴餐费补贴发展空间大扁平管理岗位晋升带薪年假节日礼物定期体检

公司信息

之江实验室

人工智能 2000-5000人 事业单位

工作地点

中国(杭州)人工智能小镇

深圳市智能机器人研究院为什么在嘉兴

嘉兴是试点。深圳市智能机器人研究院在嘉兴,是因为嘉兴是试点,嘉兴市敏硕智能科技有限公司是深圳市智能机器人研究院和敏实集团在嘉兴设立的高科技企业。研究院以推进机器人产业区域集聚发展试点工作。

国产机械臂哪个好?

一般是从三个方面来分析:

①公司实力。一家设备制造企业特别是机械臂这种高技术含量的设备,公司实力必须ok。重点可以关注下:公司规模大不大、是否有自己的生产基地、研发实力如何、有没有自己的研发团队,大族机器人总部在深圳,前身是大族机器人研究院,有100多人的研发团队,核心技术团队主要来自北京航空航天大学,还聚集了来自世界顶级的机器人和人工智能领域的科学家,挺有实力的一家国产协作机器人公司。

②产品性能。机械臂由于其极高的灵活性与安全性被广泛地应用于生产制造领域,成为生产制造的核心装备,所以性能好不好直接关乎企业命脉。大族的机械臂产品畅销100多个国家和地区。

③应用领域。大族机器人的机械臂产品一直被广泛运用于自动化集成生产线、装配、拾取、焊接、研磨、喷漆等领域,满足多元的制造生产要求与标准,可百度了解更多。

深圳市人工智能与机器人研究院的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于深圳市人工智能与机器人研究院HR、深圳市人工智能与机器人研究院的信息别忘了在本站进行查找喔。

扫码二维码