机器学习是人工智能的一个分支的简单介绍
本篇文章给大家谈谈机器学习是人工智能的一个分支,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、人工智能与有限元
- 2、人工智能在金融科技领域有哪些应用场景?(上)——基础介绍
- 3、机器学习温达是什么
- 4、机器学习名词解释
- 5、机器学习的工作内容是什么啊?
- 6、人工智能、机器学习、深度学习的关系是什么?
人工智能与有限元
谷歌的AlphaGo与柯杰的大战已经结束数日,而DeepMind承诺的50分棋谱也已经公布,而作为当前最先进的计算机“技术”,有限元方法有没有与机器学习(人工智能)进一步结合并碰发出绚丽的“火花”呢??
答案是肯定的!!!
什么是人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
机器学习是人工智能的一个分支,简单地说,就是通过算法,使机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来进行预测。
常见的机器学习算法如:
✔神经网络(Neural Network)
✔支持向量机(Support Vector Machines, SVM)Boosting
✔决策树(Decision Tree)
✔随机森林(Random Forest)
✔贝叶斯模型(Bayesian Model)等。
早期的机器学习算法由于受到理论模型和计算资源的限制,一般只能进行浅层学习,只在搜索排序系统、垃圾邮件过滤系统、内容推荐系统等地方有所应用。
而之后发生的几件事,掀起了深度学习的浪潮。一件是2006年,加拿大多伦多大学教授Hinton和他的学生Salakhutdinov在Science上发表了一篇文章,揭示了具有多个隐层的神经网络(即深度神经网络)优异的学习性能,并提出可以通过“逐层初始化”技术,来降低深度学习网络训练的难度;
第二件事是在2012年 底,Geoff Hinton 的博士生 Alex Krizhevsky、Ilya Sutskever利用卷积神经网络(Convolutional Neural Network, CNN)在图片分类的竞赛 ImageNet 上,击败了拥有众多人才资源和计算资源的Google,拿到了第一名。
如今机器学习已深入到包括语音识别,图像识别,数据挖掘等诸多领域并取得了瞩目的成绩。
有限元法的发展简史
有限元方法(FEA)即有限单元法,它是一种数值分析(计算数学)工具,但不是唯一的数值分析工具。在工程领域还有其它的数值方法,如:有限差分法、边界元方法、有限体积法。
有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。事实上,有限单元法已经成为在已知边界条件和初始条件下求解偏微分方程组的一般数值方法。
有限单元法在工程上的应用属于计算力学的范畴,而计算力学是根据力学中的理论,利用现代电子计算机和各种数值方法,解决力学中的实际问题的一门新兴学科。它横贯力学的各个分支,不断扩大各个领域中力学的研究和应用范围,同时也在逐渐发展自己的理论和方法。
神经网络与力学
其实,在深度学习浪潮掀起之前,力学和工程领域早已开始在计算力学研究中结合神经网络模型,开发出更优的算法,一个典型的例子便是有限元神经网络模型。
由于在实际工程问题中存在大量的非线性力学现象,如在结构优化问题中,需要根据需求设计并优化构件结构,是一类反问题,这些非线性问题难以用常规的方法求解,而神经网络恰好具有良好的非线性映射能力, 因而可得到比一般方法更精确的解。
将有限元与神经网络结合的方法有很多,比如针对复杂非线性结构动力学系统建模问题,可以将线性部分用有限元进行建模,非线性构件用神经网络描述(如输入非线性部件状态变量,输出其恢复力),再通过边界条件和连接条件将有限元模型部分和神经网络部分结合,得到杂交模型。
另一种方法是首先通过有限元建立多种不同的模型,再将模态特性(即最终需要达到的设计要求)作为输入变量,将对应的模型结构参数作为输入变量,训练神经网络,利用神经网络的泛化特性,得到设计参数的修正值。
结合Monter Carlo方法,进行多组有限元分析,将数据输入神经网络中进行训练,可以用来分析结构的可靠度。
已有研究成果
[1]余凯,贾磊,陈雨强,徐伟. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,09:1799-1804.
[2]周春桂,张希农,胡杰,谢石林. 基于有限元和神经网络的杂交建模[J]. 振动工程学报,2012,01:43-48.
[3]费庆国,张令弥. 基于径向基神经网络的有限元模型修正研究[J]. 南京航空航天大学学报,2004,06:748-752.
[4]许永江,邢兵,吴进良. 基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法[J]. 重庆交通大学学报(自然科学版),2008,02:188-190+216.
未来的一些方向
1、图形显示方面(有限元与ARVR)
随着有限元计算涉及的领域以及计算的规模不断增大,计算结果的高效、高质量的前后处理也随之成为了一个问题。
ARVR在图形化数据展示方面,将我们从显示屏解放出来,可以以一种更加直观的方式查看计算分析数据,未来在分析结果VR展示方面,会有较大的突破。
国内也有学者已经展开了相关方面的研究,比如《虚拟现实环境中有限元前后处理功能实现》等论文,有限元虚拟处理技术(FEMVR)也开始逐步进入相关软件领域,例如:ANSYS COMSOL可以和MATLAB做交互,新版MATLAB内置了一些人工智能算法。
2、有限元与大数据、云计算
计算规模增大,伴随着计算机能力的提升,随之而来的云计算,解脱了对于计算机硬件的束缚,对于可以放开规模与数量的分析计算,有限元与大数据以及云计算的碰撞,对于未来问题的解决,将有一个质的飞跃,量变到质变的直观体现,在有限元与大数据中会有一个绚丽的展示。
3、有限元与人工智能
人工智能作为全球热的技术,与“古老”的有限元之间,相信可以在老树上发新芽,而我们可以欣喜的看到,相关的研究也已经开展,期待未来对于现实问题的解决,能有更好的更优的方案。
4、CAD数据与CAE数据的无缝对接
目前等几何分析(Isogeometric Analysis, IGA)的发展热度来看,将CAD中用于表达几何模型的NURBS基函数作为形函数,克服FEA中模型精度损失的问题,实现CAD和CAE的无缝结合,是一个很有前途和潜力的发展方向。
5、CAE与MBD的深度融合
未来CAEFEM可能会与多体动力学仿真(MBS)软件深度整合起来。实际系统中某些运动部件的弹性无法忽略,甚至是主要动力学行为的来源,所以就产生了柔性多体动力学仿真这个需求,这样只需要定义相关部件的受力和边界条件,其余的都是内部作用,仿真即节省工作量又较为真实可信。而且现在的确有很多MBS软件里面可以把部件建成弹性体,如LMS Virtual Lab,Simpack等等,但过程没有那么傻瓜;除了简单的梁、轴等零件,复杂形状的零件要依赖FEM软件事先生成的数据文件。
6、网格工作的智能化,傻瓜化
将来对弹性体建模可能更加傻瓜,先把刚性多体系统模型建起来,然后在建模环境(前处理)中直接make body flexible,系统可以根据这个部件的形状、材料、边界条件等选择合适的网格类型,并把运动和力的作用点couple到对应的节点(组)上。比如说汽车悬挂系统仿真,在一个工作环境下就能把某个部件的应力校核给做了,而不需要说搞多体建模的人要把边界力生成一个load case再发给专门的FEM工程师去做。
(部分来自知乎)
如何追上有限元的发展
任何技术的进步,都要在实践中展示技术的威力,有限元的发展,会随着技术的进步,特别是计算机技术的进步,在未来无论是应用软件的研究还是智能程序的开发,都将有无限的机会与可能。
积极学习新技术,新方法,在应用领域,关注有限元相关软件的新功能。
1、了解热点、跟踪前沿
2、结合实际拓展应用
3、掌握自动化相关技术
想要更多,点击此处
人工智能在金融科技领域有哪些应用场景?(上)——基础介绍
定义 :人工智能即是让计算机系统模拟出感知、推理、学习、决策等人类行为。
五要素行业分析框架 :基础实施、算法、技术方向、具体技术、行业解决方案。
金融科技领域的应用则属于最终的行业解决方案层
大数据和硬件是人工智能的基础设施
大数据是人工智能的前提条件。数据即是信息,数据是进一步深加工的原材料,有了大数据的基础,才可以运用人工智能算法去解决具体问题。金融领域在数据方面有先天优势。首先,金融领域属于强数据导向的行业,且存在大量的标准化数据,例如公司的财务数据、股市债市的历史交易数据等等。其次,金融数据十分注重实效性,对人工智能的需求高。
在有了海量数据的前提下,随即产生的是对海量数据的计算需求,AI芯片应运而生。目前AI芯片发展的重点是针对神经网络等架构实现高速运算的核心硬件,即算力提高阶段。
算法是人工智能的核心
机器学习是人工智能的一个分支,是指通过模仿人脑,在经验学习中改善具体算法的性能;深度学习也是人工智能的一个分支,是指使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。
深度学习分类:
有监督:更强调人的作用。利用给定的训练数据,集中学习出一个函数(模型参数),当新的数据到来时,可以根据已知的函数预测结果,在这个过程中,训练及中的目标是由人标注的。
无监督:无监督学习目标不是告诉计算机怎么做,而是让计算机自己去学习怎么做事情。在无监督的深度学习中,输入的数据没有被标记,也没有确定的结果,数据样本类别未知,需要计算机根据样本间的相似性对样本集进行分类(聚类,使类内差距最小,类间差距最大)。
半监督学习:介于前两者之间,使用半监督学习时,将会要求最少的人员从事工作,同时,又能够带来比较高的准确性。
机器学习步骤:
训练:通常需要通过大量的数据输入,或采取增强学习等非监督学习方法,训练出一个复杂的深度神经网络模型,训练过程由于涉及海量的训练数据(大数据)和复杂的深度神经网络结构,需要的计算规模非常庞大,通常需要GPU集群训练几天甚至数周的时间。
推断:利用训练好的模型,使用新的数据去“推断”出各种结论,如视频监控设备通过后台的深度神经网络模型,判断一张抓拍到的人脸是否属于黑名单。
机器学习温达是什么
机器学习是如今人工智能领域中进展最大的方面,更多的初学者开始进入了这个领域。在这篇文章中,机器学习与NLP专家、MonkeyLearn联合创始人CEO Raúl Garreta面向初学者大体概括使用机器学习过程中的重要概念,应用程序和挑战,旨在让读者能够继续探寻机器学习知识。
机器学习是人工智能的一个分支,它通过构建算法让计算机学习,并且在数据集上使用这些算法来完成任务,而不需要进行明确编码。
明白了吗?我们可以让机器去学习如何做事情!当我第一次听到它的时候,让我非常兴奋。那意味着我们可以对计算机进行编码,让它们自己去学习东西!
学习的能力是智能最重要的一个方面。将这种能力运用到机器上,应该是向让计算机更智能迈出了一大步。事实上,机器学习是如今人工智能领域中进展最大的方面;现在它是个时髦的话题,并且使用机器学习也非常可能造就出更智能机器。
机器学习名词解释
机器学习是人工智能 (AI) 和计算机科学的分支,专注于使用数据和算法来模仿人类学习的方式,逐渐提高其准确性。
IBM 拥有丰富的机器学习历史。 业界广泛认为,Arthur Samuel 在有关跳棋的研究(PDF, 481 KB)(链接位于 IBM 之外)中创造了“机器学习”这个词。 自称跳棋大师的 Robert Nealey 于 1962 年与 IBM 7094 计算机对弈,结果输给了计算机。 与机器学习今天的成就相比,这看似微不足道,但它被认为是人工智能领域的一个重大里程碑。 在接下来的几十年里,存储和处理能力方面的技术突飞猛进,出现了我们现在所知道并喜爱的一系列创新产品,如 Netflix 的推荐引擎或自动驾驶汽车。
机器学习是不断成长的数据科学领域的重要组成部分。 通过使用统计方法,对算法进行训练,以进行分类或预测,揭示数据挖掘项目中的关键洞察。 然后,这些洞察可推动应用和业务中的决策,有效影响关键增长指标。 随着大数据的持续扩大和增长,数据科学家的市场需求也水涨船高,要求他们协助确定最相关的业务问题,并随后提供数据以获得答案。
机器学习的工作内容是什么啊?
机器学习是人工智能的一个重要分支,其主要工作内容如下:
数据收集和预处理:机器学习需要大量的数据来训练模型,所以需要收集和整理数据。
模型选择和开发:选择合适的机器学习算法和模型,并进行开发。
数据训练和评估:使用收集的数据训练机器学习模型,并评估模型的性能。
模型部署和应用:将训练好的模型部署到生产环境,并在实际应用中使用。
数据监控和维护:对部署的模型进行监控和维护,并随时调整模型以提高性能。
研究和开发新技术:不断研究和开发新的机器学习技术和算法,以提高模型的性能和准确性。
可视化和报告:使用数据可视化工具来展示和汇报数据分析结果,并向团队成员和客户提供可视化的报告。
与其他团队合作:与数据科学家,工程师和其他团队成员合作,共同完成项目。
项目管理:负责项目的管理和跟踪,确保项目按时完成并达到预期目标。
业务理解:了解客户的业务需求和目标,并使用机器学习技术来解决实际问题。
通信和沟通:与客户和团队成员进行有效的沟通和交流,确保项目顺利进行。
数据安全和隐私:确保数据安全和隐私,遵守相关法律法规。
总之, 机器学习工作者需要具备数据分析,编程,算法,数学知识以及项目管理能力, 了解业务需求并使用技术来解决问题,还需要学习和研究最新技术并与其他团队合作。
人工智能、机器学习、深度学习的关系是什么?
人工智能(Artificial Intelligence),简称AI,是一种计算机系统,经过训练后可以感知环境、做出决策及采取行动。它是研究和开发用于延伸和扩展人的智能的一种理论、方法、技术及应用的一门学科,其研究领域主要包括机器人、语言识别、图像识别、自然语言处理、专家系统以及其它相关领域等。
机器学习(Machine Learning),是人工智能的一个分支,通过学习已知数据来构建模型并对未知数据进行预测的技术。通常它表示的是以贝叶斯法、决策树、分类、回归、EM算法、支持向量机等技术为基础的传统学习方法,根据学习过程的特点又可分为监督学习和无监督学习。
深度学习(Deep Learning),机器学习的一个分支,它通过研究人类大脑的神经元的工作机制,用计算机模拟并建立神经网络模型,然后再通过数据对它进行训练,目前最常见的是应用与计算机视觉领域的卷积神经网络(CNN)以及应用与语音识别领域的递归神经网络(RNN)等。它与传统机器学习的主要区别在于,深度学习算法不需要手动选择相关特征,而是通过学习自动寻找有价值的特征。
机器学习是人工智能的一个分支的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、机器学习是人工智能的一个分支的信息别忘了在本站进行查找喔。